Detector Challenges at Future Higgs Factories and formation of Detector R&D (DRD) Collaborations (with focus on calorimetry)

Roman Pöschl

Supported by

Seminar ICEPP University of Tokyo – December 2023

Linear Electron Positron Colliders

Cool Copper Collider

Based on new RF Technology Operation at Cryogenic temperature (LN2 ~ 80K) Aiming at gradients of 120 MV/m

Energy: 0.4 - 3 TeV

CDR in 2012 Update 2016

Footprint 48km

Initial Energy 380 GeV

Circular Electron Positron Colliders

ICEPP Seminar – Dec. 2023

e+e- Physics program

All Standard Model particles within reach of planned e+e- colliders

High precision tests of Standard Model over wide range to detect onset of New Physics

Machine settings can be "tailored" for specific processes

•Centre-of-Mass energy

•Beam polarisation (straightforward at linear colliders)

$$\sigma_{P,P'} = \frac{1}{4} \left[(1 - PP')(\sigma_{LR} + \sigma_{RL}) + (P - P')(\sigma_{RL} - \sigma_{LR}) \right]$$

Background free searches for BSM through beam polarisation Roman Pöschl

Energy reach of LC

Snowmass EF-Vision (L. Reina)

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{ ext{int}}$	Start Date	
			e^-/e^+	ab^{-1} /IP	Const.	Physics
HL-LHC	pp	14 TeV		3		2027
ILC & C^3	ee	250 GeV	$\pm 80/\pm 30$	2	2028	2038
		350 GeV	$\pm 80/\pm 30$	0.2		
		500 GeV	$\pm 80/\pm 30$	4		
		$1 {\rm TeV}$	$\pm 80/\pm 20$	8		
CLIC	ee	380 GeV	$\pm 80/0$	1	2041	2048
CEPC	ee	M_Z		50	2026	2035
		$2M_W$		3		
		240 GeV		10		
		360 GeV		0.5		
FCC-ee	ee	M_Z		75	2033	2048
		$2M_W$		5		
		240 GeV		2.5		
		$2 M_{top}$		0.8		
μ -collider	$\mu\mu$	125 GeV		0.02		

High energies ~above tt-threshold Domain of linear colliders

Low energies e.g. Z-pole Domain of circular machines However, see later ...

Transition region, i.e. HZ threshold ... not so clear and N = σ L

Linear colliders are more versatile beams

- Comparable numbers for all proposals
- to test chiral theory due to polarised
- Plot on power consumption see backup

(Rough) Comparison – Hadron collisions $\leftrightarrow e^+e^-$ collisions

- Require hardware and software triggers
- High radiation levels

- No trigger
- Full event reconstruction

Detector systems – Target projects

ICEPP Seminar – Dec. 2023

slide stolen from B. Dudar

Track momentum: $\sigma_{1/p} < 5 \times 10^{-5}/\text{GeV}$ (1/10 x LEP) (e.g. Measurement of Z boson mass in Higgs Recoil) Impact parameter: $\sigma_{d0} < [5 \oplus 10/(p[GeV]sin^{3/2}\theta)] \mu m (1/3 \times SLD)$ (Quark tagging c/b) Jet energy resolution : $dE/E = 0.3/(E(GeV))^{1/2}$ (1/2 x LEP) (W/Z masses with jets) Hermeticity : ... well as hermetic as possible, LC Detectors require $\theta_{min} = 5$ mrad (for events with missing energy e.g.dark sector/ invisible decays)

Final state will comprise events with a large number of charged tracks and jets(6+)

- High granularity
- Excellent momentum measurement
- High separation power for particles

Particle Flow Detectors

- Jet energy measurement by measurement of individual particles
- Maximal exploitation of precise tracking measurement
 - Large radius and length
 - → to separate the particles
 - Large magnetic field
 - → to sweep out charged tracks
 - "no" material in front of calorimeters •
 - → stay inside coil (the puristic viewpoint)
 - → see later discussion
 - Minimize shower overlap
 - Small Molière radius of calorimeters
 - high granularity of calorimeters
 - → to separate overlapping showers

Detector Hermeticity

Invisible Higgs decays

Rich events:

Hermeticity = Acceptance down to the beam pipe and no acceptance holes!

Detector Hermeticity requires is team effort Vertex Detectors, Central Tracking and of course calorimeters

Missing Energy

I ICAVY QUAIN ASYIIIIICUIES

Concepts currently studied differ mainly in SIZE and aspect ratio

	ILD	SiD	CLICdp	CLD
Rin [mm] Vertex Detector	16	14	31	17.5
R _{in, Ecal} [mm]	1805	1270	1500	2150
R _{out,tot} [mm]	7755	6042	6450	6000
Z _{min, ECAL} [mm]	2411	1657	2310	2310
Z _{max,tot} [mm]	6712	5763	5700	5300
B [T]	3.5	5	4	2

Figure of merit (ECAL):
Barrel: $B R_{in}^2 / R_m^{effective}$
Endcap: "B" Z ² / R _m ^{effective}
R _{in} : Inner radius of Barrel ECAL
Z : Z of EC ECAL front face
Different approaches
SiD: $B_{R_{in}^2}$
CLICdp: B R _{in} ²
ILD B R _{in} ²
CLD: в <mark>R 2</mark>

- Roughly: The smaller B the bigger R has to be
- Overall outer radius will depend on required Hcal thickness
- ... and details of return yoke design
 - Cost, safety considerations ...

ECFA Detectors for e+e- Colliders – Main Parameters

- The position of the solenoid is an obvious topic of study (if not done yet)
 - Comparison has to be carried out at equal footing
 - Definition of benchmarks, detail of detector simulation

Linear Colliders operate in bunch trains

CLIC: $\Delta t_{h} \sim 0.5$ ns, frep = 50Hz ILC: $\Delta t_{h} \sim 550$ ns, frep = 5 Hz (base line)

- Power Pulsing reduces dramatically the power consumption of detectors
 - e.g. ILD SiECAL: Total average power consumption 20 kW for a calorimeter system with 10⁸ cells
- Power Pulsing has considerable consequences for detector design
 - Little to no active cooling
 - => Supports compact and hermetic detector design
- Upshot: Pulsed detectors face other R&D challenges than those that will be operated in "continuous" mode
 - R&D Goal: Avoid/minimise active cooling also in continuous mode
 - Challenge differs depending on where the electronics will actually be located

Future direction of R&D - Impact of event rates

- Physics rate is governed by strong variation of cross section and instantaneous luminosity • Ranges from 100 kHz at Z-Pole (FCC-ee) to few Hz above Z-Pole • (Extreme) rates at pole may require other
- solutions than rates above pole

- Event and data rates have to looked at differentially
 - In terms of running scenarios and differential cross sections
 - Optimisation is more challenging for collider with strongly varying event rates
 - Z-pole running must not compromise precision Higgs physics

High energy e+e- colliders:

FCC MDI Nutshell (and poor man's) Introduction

200

100

mm

QC1

- Circumference 90,6 km
- 4IP (FCC-ee = FCC-hh)

M. Boscolo, FCC Week Cracow

Roman Pöschl

Typical MDI LumiCal umiCal Central chamber QC' Z = +/- 9 cm R = 1.0 cm +/- 1 m

1	• L* = 2.2m
	Final quadropole inside detector
-	region
1	(and is background source)
	 LumiCal at 1000mm
. 0.	• => defines tracker acceptance
	cos ~0.984
-	Inner beampipe radius 10mm
1	 Magnetic Field 2 T
-	 Crossing angle ~30 mrad

Compare with ILC MDI region

- $L^* = 4.1m$ Final quadropole outside of detector region
- Tracker Acceptance defined by conic beam pipe(due to blown-up beam) cos ~0.995
- LumiCal at ~2500mm
- Inner beampipe radius 16 mm
- Magnetic Field 3.5-4 T
- Crossing angle 14 mrad

Vertexind and Tracking

PhD thesis: S. Bilokin A. Irles Roman Pösch

- Determination of primary vertex
- Flavor tagging
- Quark charge measurement
 - Important for top quark studies,
 - indispensable for ee->bb, cc, ss, ...
- Control of migrations:
 - Correct measurement of vertex charge
 - Kaon identification by dE/dx (and more)
- double Tagging and vertex charge •LEP/SLC had to include single tags and semi-leptonic events

Indispensable for analyses with final state quarks

• Future detectors can base the entire measurements on

Central Tracking

Collider	ILC		CLIC	FCC-ee			CEPC	
Detector Concept	SiD	ILD	CLICdet	CLD	FCC-ee IDEA	Noble LAr/LKr	CEPC baseline	CEPC IDEA
B-field [T]	5	4	4	2	2	2	3	2
Vertex inner radius [mm]	14	14	31	17 → 12	17 → 12	17 → 12	16	16
Tracker out. radius [m]	1.25	1.8	1.5	2.2	2.0	2.0	1.81	2.05
Vertex	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel
Tracker	Si-strips	TPC/ Si-strips	Si-pixel	Si-pixel	DC/ Si-strips	DC/Si-strips or Si-pixel	TPC/Si-strips or Si-strips	DC/ Si-strips

Ziad El Bitar Rozand Escort A Higgs/top/elw. Workshop

ICEPP Seminar – Dec. 2023

Vertex Detectors - Constraints

Physics O(Hz/cm²)

Ziad El Bitar Ro2nd EsGFA Higgs/top/elw. Workshop

Vertex Tracking

Big question: Radius of beam pipe

bent layers ICEPP Seminar = >e No carrier structures

• Low material budget is overall challenge • Major step through ALICE upgrade (?)

ITS2: (S.Beolé, iWoRiD 2022) 7 layers of MAPS TJ 180 nm CMOS 12.5 Giga pixels Pixel size: 27×29 μm² Water cooling • 0.3 % X₀ / inner layer ITS3 (M. Šuljić, iWoRiD 2023)

- 4 outer layers of ITS2 ٠
- 3 new fully cylindrical ٠ inner layers
 - Sensor size up to 27×9 cm
 - Thickness 30-40 μm
 - No FPCs
 - Air cooling in active area
- 0.05 % X₀ / inner layer

Considerable material reduction by application of

Vertex Tracking - Synergies

CLICdp Wind Tunnel

Numerous similarities in their vertex detector requirements (conflicts !), concepts & design:

- inner layer & beam pipe radii, spacial & time resolution, radiation load, etc.
- power consumption / mass budget / warm cooling / cooling service path-bulk

M. Winter Ro**A**tan **Fasemch FCC Meeting**

Central Tracking

"Royal" task of central tracking system Precise measurement of charged particles in e.g.

Gluckstern Formula:

$$\frac{\Delta p_t}{p_t^2} = \frac{\sigma_{r\phi}}{0.3 L^2 B} \sqrt{\frac{720}{N+4}}$$

Relates track momentum resolution with single point resolution σ with Number of hits and track length L and magnetic Field B

Option 1: All silicon tracking

Option 2: Gaseous tracking

IDEA Drift Chamber

The DCH is:

- a unique-volume, high granularity, fully stereo, low-mass cylindrical
- gas: He 90% iC₄H₁₀ 10%
- inner radius $R_{in} = 0.35m$, outer radius $R_{out} = 2m$
- length L = 4m
- drift length ~1 cm
- drift time ~150ns
- $\sigma_{xy} < 100 \ \mu m, \sigma_z < 1 \ mm$
- 12÷14.5 mm wide square cells, 5 : 1 field to sense wires ratio
- 112 co-axial layers, at alternating-sign stereo angles, arranged in 24 identical azimuthal sectors, with frontend electronics
- 343968 wires in total:

sense vires: 20 μ m diameter W(Au) = > 56448 wires field wires: 40 μ m diameter Al(Ag) = > 229056 wires f. and g. wires: 50 μ m diameter Al(Ag) = > 58464 wires

- the wire net created by the combination of + and - \geq orientation generates a more uniform equipotential surface → better E-field isotropy and smaller ExB asymmetries)
 - thin wires \rightarrow increase the chamber granularity \rightarrow reducing both multiple scattering and the overall tension on the endplates

Central Tracking – Gaseous Tracking - TPC

- Charged particle ionizes Gas
- Electron cloud drifts to Anode (Readout layer)
- Transversal diffusion is largely suppressed since E || B
- z Coordinate: $z = v_d \cdot t_d$ (vd, td drift velocity and drifttime, respectively
- $r\phi$ Coordinate by segmented Readout layer

ICEPP Seminar – Dec. 2023

TPC – From ALEPH to ILD

ILD

- 22 pad rows for 22 space points in rφ
- Typical pad pitch 6.2x30mm²
- N.B.: Signal collection with help of 334 sense wires

- 220 pad rows for 220 space points in rφ
- Typical pad size $1x6 \text{ mm}^2 => O(10^6) \text{ Pads}$

K. Fujii, TYL Meeting 2011

• Readout with Micro Pattern Gas Detectors (MPGD)

SiD and CLICdp have chosen all silicon tracking for the central tracking

The concept is based on a few layers with excellent position resolution: Typically 5-10 µm

3D Cut view

SiD: Sensor overlap allow for full coverage in R and ϕ

ICEPP Seminar – Dec. 2023

Track Momentum Resolution - Comparison

Both approaches achieve desired asymptotic momentum resolution $a = 2x10^{-5} \text{ GeV}^{-1}$

- Count number of primary ions (that stay in TPC for long time, ~0.44s)
- Main source of background: Beamstrahlung many low energy e+e- pairs due to quadropole moment of beam => focusing effect
- Per bunch crossing more for more (more focusses) Linear Collider, here ILC
- Accumulation due to high repetition frequency at circular colliders

~			FCCee-91	FCCee-24
model	B-field	MDI	thousand	ions / buncl
ILD_15_v02	3.5 (uniform)	ILC	6.5	14
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9	1:
ILD_15_v03	3.5 (map)	ILC	5.7	14
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6	3.
ILD_15_v11	2.0 (uniform)	FCCee	390	100

• MDI for FCC increase background significantly compared to MDI for ILC

Gaseous Tracking – dE/dx in ILD

- Up to 220 points for dE/dx in ILD
- ILD targets resolution of at least 5% on dE/dx,
- Fine pixels avoid ambiguities
 - => most of the time all 220 Hits are available
 - Big difference to e.e. ALEPH
- Test beam results are encouraging

Applications of dE/dx:

- Kaon identification in ee->tt, ee->bb, ee->cc, ee->ss •Supplementary to vertex charge measurement for heavy quarks Increases statistics by a factor of two •Backbone of ee->ss
- Separation of W->ud and W->cs
- Separation power pi/K 2-3 sigma at momenta above 2 GeV
 - Degradation towards higher momenta

Gaseous Tracking – $dE/dx \rightarrow dN/dx$ and timing

Particle ID and time resolution DRD4 & 1/3

More details here:

https://indico.cern.ch/event/1202105/contributions/5402790/attachments/2662086/4612032/FCC-DRD4.pdf

TF#1

Gaseous

Detectors

Anna Calale

TF#2

Liquid

Detectors

Roxanne Guenett

TF#3

Solid State

Detectors

Nicole' Cartiglia

TF#4

Photon

Detectors & PID

Neulle Harnew Peter Krisse

- Goal: •
 - \checkmark K/ π , π/e^{-} separation, etc. \Rightarrow Interest to push beyond 10 ps resolution
 - ✓ Even more important for the physics program @ Z peak

A. Besson Roffan Frisench FCC Meeting

ICEPP Seminar – Dec. 2023

In absence of gaseous tracking

(With two closed eyes) ToF systems might work up to 10 GeV

- ToF and Cherenkov are options for PiD systems
- Cherenkov most likely needed to go to high momenta
- Both lead to " compressed tracking systems
- New ideas to minimise this compression might be needed
- ... and material is added in front of the calorimeter

Requirements for calorimetry at future colliders

Inspired from https://indico.cern.ch/event/994685/

M. T. Lucchini, 1st Calo Community Meeting Roman Pöschl

- Calorimeters in no longer a detector to measure only Energy (1D) ٠
- High granularity is recurrent topic in all the proposals (+ 3D) ٠
 - 2D-segmentation
 - 3rd dimensions achieved either by physical segmentation or by timing information
- Timing is also additional "dimension" of the calorimeter (+1D) ٠
 - pile-up rejection (μ -collider, FCC-hh, ...)
 - better track/particle matching —
 - tens of ps is the current paradigm for timing application

Examples:

W Fusion with final state neutrinos requires reconstruction of H decays into jets

Jet energy resolution of ~3% for aclean W/Z separation

Slide: F. Richard at International Linear Collider – A worldwide event

 e^{-}

Jet energy resolution

Final state contains high energetic jets from e.g. Z,W decays Need to reconstruct the jet energy to the <u>utmost</u> precision ! Goal is around dE_{iet}/E_{iet} - 3-4% (e.g. 2x better than ALEPH)

Jet energy carried by ...

- Charged particles (e[±], h[±], µ[±]): 65% Most precise measurement by Tracker Up to 100 GeV
- Photons: 25% Measurement by Electromagnetic Calorimeter (ECAL)
- Neutral Hadrons: 10% Measurement by Hadronic Calorimeter (HCAL) and ECAL

$$\sigma_{Jet} = \sqrt{\sigma_{Track}^2 + \sigma_{Had.}^2 + \sigma_{Had.}^2} + \sigma_{Had.}^2 + \sigma_$$

ICEPP Seminar – Dec. 2023

 $\sigma_{elm.}^{-} + \sigma_{Confusion}$

Jet energy resolution – Different approaches

Optimise for electromagnetic

Imaging calorimeters

Imaging calorimeters live on the high separation power for Particle Flow

• Challenges:

- High pixelisation, 4pi hermetic -> little room for services
 - Detector integration plays a crucial role
- New strategic R&D issues
 - Detector module integration
 - Timing
 - High rate e+e- collider (such as FCCee)

CALICE (Technological) Prototypes

ScECAL

SiECAL

AHCAL

Name	Sensitive Material	Absorber Material	Resolution	Pixel size/mm ³	~Layer size**/cm ³	~Layer depth/X ₀	∼Layer depth/λ _,	# of Pixels/ layer
ScECAL	Scintillator	W-Cu Alloy	Analogue, 12bit	5x45x2	23x22x0.5	0.73	0.03	210
SiECAL	Si	W	Analogue, 12bit	5.5x5.5x 0.3 (0.5, 0.65)	18x18x 0.24 (- 0.63)	0.6-1.6	0.02-0.06	1024
AHCAL	Scintillator	Fe*/W	Analogue, 12bit	30x30x3	72x72x2/ 1.4	1/2.9	0.11	576
SDHCAL	Gas	Fe*	Semi- digital 2bit	10x10x6	100x100x 2.6	1.1	0.12	9216

*Stainless Steel

*Stainless Steel **Only absorber + sensitive material for z direction, air gaps, electronics discarded here (would add 5-10%)

SDHCAL

# of layers	Comment
32	2x16 x and y strips
≥22	Can be run in different configs.
38	Running with Fe and W
48	

Common Challenges

Space

- Successful application of PFA requires calorimeters to be inside the magnetic coil
- => Tight lateral and longitudinal space constraints
- Both for readout components and services (power, cooling) •

Pandora PFA jet energy resolution

Study within ILD Concept

- Design goal: 30%/√E at 100 GeV • ~3-4% over entire jet energy range
- At lower energies < 100 GeV resolution is dominated by intrinsic calorimeter resolution
- At higher energies have more particles and higher boost
 - Smaller distance between particles
 - More overlap between calorimeter showers Pattern recognition becomes more challenging
 - => Confusion
- Note particularly the gain by software compensation
 - high granularity

PFAs ARBOR and APRIL are alternatives with similar performance

• i.e. exploiting the wealth of information available through

Active cooling?

- LAr Calorimetry is proven technology since a few decades ATLAS, H1, DO, NA31
- Challenge is to make the technology "fit" for future hadron and lepton machines
- Design is driven by particle flow
 - ATLAS Jet-Energy resolution based on PFA
 - ~24% at 20 GeV and 6% at 300 GeV
- => Increase of granularity
 - Goal: Factor ~10 w.r.t. ATLAS LAr Calorimeter
 - 220 kCells -> ~2 MCells

ATLAS LAr calorimeter

- Development of a multilayer PCB
 - HV Layer on both sides
 - Readout layer on both sides
 - Connected to signal trace

- One signal trace is economical solution to reduce signal traces
- Pick-up of signal from both sides increases S/N

Challenges:

- Control number of signal traces
- Big number of capacitanes => Noise

 - Cold electronics?

• Goal is 300 keV Noise for 200 pF cell (S/N > 5)• FCCee allows for higher integration times

Work Package 2 – Liquid Noble Gas Calorimeters

Develop the calo design •

- Study design solutions for endcaps 0
- Study general performance in 0 simulation, in combination with some HCAL concept
- Optimize granularity 0

Build a first prototype and measure

performance in testbeam

- Need to design and optimize electrodes, 0 absorbers
- Readout electronics 0
- Can then be refined to test further 0 developments / new ideas

4 Work Areas

- 1. performance
- Readout electrodes 2.
- 3. Readout electronics
- 4.

General design and expected Mechanical studies and prototype

Dual readout calorimetry – Building Blocks

Electromagnetic and hadronic components of shower

Prototype with hadronic containment

Major challenge SiPM integration

- 65x65x200 cm³
- 17 modules in total
- 2 central modules equipped with SiPMs
- 15 modules equipped with PMTs

Under construction as we speak

Sampling and Homogeneous Calorumeters

- Many proposals are based on sampling calorimeters
 - i.e. Separation of sensitive and absorber medium
- Sampling leads to limitations in elm. energy resolution 10-15%/√E
- (Most likely) homogeneous calorimeters remain the only way to get to energy resolutions of $1-5\%/\sqrt{E}$

15%/√E

Homogeneous: Crystals Homogeneous: Lead glass Sampling: Liquid Ar 25 Sampling: Plastic Scintillator Sampling: Silicon / W-Cu 20 [%] 20 н ¹⁵ 0 σ_E/E OPAL ALICE PHOS CMS BELLE crystals

CP violation studies with B_s decay to final states with low energy photons

[R.Aleksan et al., Study of CP violation in B[±] decays to D0(D0)K[±] at FCCee, arXiv:2107.05311

ICEPP Seminar – Dec. 2023

Combination crystal calo and DR Calo

Roman Pöschl

Scintillator based sampling	Homogeneous EM crystal	Homogeneous (EM+HAD)	Large mass c
calorimeters	calorimeters	calorimeters	calorime
GAGG:Ce	PWO	Heavy	TeO
YAG:Ce	BGO	glasses	
LuAG:Ce ZnWO ₄	BSO	Plastic PWO scintillator	LIMOO

Optimization and customization of active materials, light collection and readout is common to all proposals

- R&D will have to break down the plethora of materials to few on which the R&D will focus on
- Definition of criteria needed!

P. Roloff, M. Lucchini 2nd Calo Community Meeting

ogenic

ZnSe

٥0

- Radiation hard optical materials with ultrafast timing response are required for new detectors in HEP, nuclear medicine and industry
- A time resolution below 30 ps or even in the sub ps domain requires a better understanding of the fast signal production mechanisms in detection materials
- Innovative test suites required for the combination of fast timing and radiation tolerance will be developed for the characterisation and classification of materials

Crytur PWO crystals

• Scalable and cost effective production techniques for the novel materials have to be explored together with the industrial partners

GlasstoPower development on quantum materials

3 D printed garnet Crystals

Courtesy G. Dosovitskyi, Kurchatov Institute

Glass Scintillators – The bright future?

Glass scintillator HCAL

Motivation: better energy resolution

Higher density is higher sampling fraction.

Validate with standalone simulation:

- $\lambda_I = 23.83$ cm, MIP response ~7 MeV/cm.
- Standalone simulation of glass-steel:
 - 40 layers, total depth 5λ.

- HCAL resolution can be improved with higher density. - Consider 6 g/cm^3 as glass scintillator R&D target (a

PCB

balance with the light yield).

Two points to take home (my understanding):

- Would be relatively cheap
- Problem is optimal doping to achieve transparency

shot

Sen & Dejing, TIPP 2023

• A topic on which calorimetry has to make up it's mind •Remember also that time resolution comes at a price -> High(er) power consumption and (maybe)

ICEPP Seminar – Dec. 2023

Timing is a wide field

- A look to 2030 make resolutions between 20ps and 100ps at system level realistic assumptions
- At which level: 1 MIP or Multi-MIP?
- For which purpose ?

higher noise levels

•Mitigation of pile-up (basically all high rate experiments) •Support of PFA – unchartered territory

- •Calorimeters with ToF functionality in first layers?
 - •Might be needed if no other PiD detectors are available (rate, technology or space requirements)

•In this case 20ps (at MIP level) would be maybe not enough

•Longitudinally unsegmented fibre calorimeters

120 100 80 60 40 20 0 Particle Flow

Pile Up Mitigation

Timing ?

Required Time Resolution [ps]

Future Organisation of Detector R&D (in Europe)

- Current model: DRD will be hosted by CERN and therefore become legally CERN collaborations
 - Significant participations by non-European groups is explicitly welcome and needed
 - World wide collaborations!
- The progress and the R&D will be overseen by a DRDC that is assisted by ECFA
 - https://committees.web.cern.ch/drdc
 - Thomas Bergauer of ÖAW/Austria appointed as DRDC-Chair
- The funding will come from national resources (plus eventually supranational projects) ICEPP Seminar – Dec. 2023 Roman Pöschl

Detector R&D Collaborations

Categories of R&D

F. Sefkow, CALICE Meeting and ECFA Higgs/top/EW Factory Meeting

Status of DRDs

Collab.	Торіс	Initial Proposal Submission	Seeking approval
DRD 1	Development of Gaseous Detectors	July 2023	Dec. 2023
DRD 2	Liquid Detectors	July 2023	Dec. 2023
DRD 3	Solid State Detectors	3 Oct. 2023	Dec. 2023
DRD 4	Photon Detectors and Particle Identification Techniques	July 2023	Dec. 2023
DRD 6	Calorimetry	July 2023	Dec. 2023
DRD 5	Quantum and Emerging Technologies		later
DRD 7	R&D Collaboration for Electronic Systems	Lol submitted	later
TF 8	Integration	-	later

comment

Former RD51

Former RD50

CALICE, CrystalClear

Workshop on 6th Dec.

DRD Calo – Basic structure

Resource Board

WORK PACKAGE 4

Electronics and DAQ

Complementation with TA on Mechanics under discussion

DRD Calo – Basic structure

Institutes Per Proposal

DRD Calo – Overall Interest

Institutes per Countries

- Mainly European Groups but interest from all over the world (37%)
 - US biggest single participation -> close contact to emerging effort in US
 - Very visible Asian participation

d <mark>(37%)</mark> n US

DRD Calo – Where?

- Detector Optimisation is a wide field
- Several aspects are common across Higgs factories
 - Low material for vertex detectors
 - PID Capabilities
 - Granular calorimeters
 - Understanding the usefulness of time information
- Carrying detector requirements into Detector R&D require close communication between concepts and detector R&D Collaborations
- Detector R&D Collaborations allow for exploiting synergies between different proposals
 - Allow to carry out coordinated strategic R&D
 - DRDs are about to start
 - Worldwide participation

Backup

- G. Chiarello et. al, NIM A 936 (2019) 503-504
- G. Cataldi et al. NIM A 386 (1997) 458
- F. Grancagnolo, AIDAinnova kickoff (link) + private communication
- J. Kaminski, "Electronics for cluster counting" RD51 workshop (link)

Particle Separation (dE/dx vs dN/dx)

- IDEA Drift Chamber PID resolution can be considerably improved using cluster counting:
 - Standard truncated mean dE/dx : σ ≃ 4.2%
 - Cluster counting : $\sigma \simeq 2.5\%$ ٠
- FEE for cluster counting: till now, single channels solutions available, see e.g.: IEEE IWASI 2007 pp. 1-5, III JINST 12 C07021 (2017), III NIMA 735 (2014) 169

Further developments (R&D):

- Development of suitable FEE for IDEA and SCTF (INFN, BINP) AIDAinnova Task 7.4.1
 - BW > 1 GHz, noise < 1 mV, gain > 10, power < 10 mW/ch,
- Data reduction (peak finder) and pre-processing at high-rates on FPGA
 - (IIII JINST 12 C07021 (2017)
- Experimental verification of dN/dx method with e, μ , π , K, p beams (ECFA input)
 - → test beams at CERN (H8), He-based mixtures

$$_{\rm ers}L_{\rm track})^{-0.5}$$

ECFA Calorimetry- Identified Key Technologies and R&D Tasks

• Key technologies and requirements are identified in ECFA Roadmap

- Si based Calorimeters
- Noble Liquid Calorimeters
- Calorimeters based on gas detectors
- Scintillating tiles and strips
- Crystal based high-resolution Ecals
- Fibre based dual readout
- R&D should in particular enable
 - Precision timing
 - Radiation hardness
- R&D Tasks are grouped into
 - Must happen
 - Important
 - Desirable
 - Already met

		5	3	*
8	Per la	e Bo	R	8
Ser.	3	7	9 8	a.
3~	T	2	×	2

	Low power	6.2,6.3	
	High-precision mechanical structures	6.2,6.3	
5i based	High granularity 0.5x0.5 cm ² or smaller	6.1,6.2,6.3	•
calorimeters	Large homogeneous array	6.2,6.3	
	Improved elm. resolution	6.2,6.3	
	Front-end processing	6.2,6.3	
20	High granularity (1-5 cm ²)	6.1,6.2,6.3	
Hable Handd	Low power	6.1, 6.2, 6.3	
calorimeters	Low noise	6.1, 6.2, 6.3	
	Advanced mechanics	6.1, 6.2, 6.3	
	Em. resolution O(5%/√E)	6.1, 6.2, 6.3	
e	High granularity (1-10 cm ²)	6.2,6.3	
Latorimeters based on gas	Low hit multiplicity	6.2,6.3	
detectors	High rate capability	6.2,6.3	
	Scalability	6.2,6.3	
	High granularity	6.1, 6.2, 6.3	•
Scintillating	Rad-hard photodetectors	6.3	
and of surps	Dual readout tiles	6.2,6.3	
	High granularity (PFA)	6.1,6.2,6.3	
rystal-based high	High-precision absorbers	6.2,6.3	
esolution ECAL	Timing for z position	6.2,6.3	
	With C/S readout for DR	6.2,6.3	
	Front-end processing	6.1, 6.2, 6.3	•
	Lateral high granularity	6.2	
Fibre based dual	Timing for z position	6.2	
	Front-end processing	6.2	
	100-1000 ps	6.2	
Timing	10-100 ps	6.1, 6.2, 6.3	•
	<10 ps	6.1, 6.2, 6.3	
Radiation	Up to 10 ¹⁶ n _{er} /cm ²	6.1,6.2	• • •
hardness	> 10 ¹⁶ n_/cm ²	6.3	
Excellent EM	< 3%/JE	6.1,6.2	

Important to meet several phy

ust happen or main physics goals cannot be met

ECFA **DRD Calo – From input proposals to working structure**

The Proposal Team

Track 1: Sandwich calorimeters with fully embedded Electronics – Main and forward calorimeters

Track conveners: Adrian Irles (IFIC), Frank Simon (KIT), Jim Brau (U. of Oregon), Wataru Ootani (U. of Tokyo)

Track 2: Liquified Noble Gas Calorimeters

Track Conveners: Martin Aleksa (CERN), Nicolas Morange (IJCLab), Marc-André Pleier (BNL)

Track 3: Optical calorimeters: Scintillating based sampling and homogenous calorimeters

Track Conveners:

Etiennette Auffray (CERN), Gabriella Gaudio (INFN-Pavia), Macro Lucchini (U. and INFN Milano-Bicocca), Philipp Roloff (CERN), Sarah Eno (U. of Maryland), Hwidong Yoo (Yonsei Univ.)

Track 4: Transversal Activities

Christophe de La Taille (Lab. Omega)

G. Gaudio 2nd Calorimeter Community Meeting

Input proposals 23 comprising 110 institutes/labs received

Institutes Per Proposal

DRD6 - The "readout landscape"

Name	Track	Active media	readout
LAr	2	LAr	cold/warm elx"HGCROC/CALICElike ASICs"
ScintCal	3	several	SiPM
Cryogenic DBD	3	several	TES/KID/NTL
HGCC	3	Crystal	SiPM
MaxInfo	3	Crystals	SIPM
Crilin	3	PbF2	UV-SiPM
DSC	3	PBbGlass+PbW04	SiPM
ADRIANO3	3	Heavy Glass, Plastic Scint, RPC	SIPM
FiberDR	3	Scint+Cher Fibres	PMT/SiPM, timing via CAENFERS, AARDVARC-v3, DRS
SpaCal	3	scint fibres	PMT/SiPMSPIDER ASIC for timing
Radical	3	Lyso:CE, WLS	SiPM
Grainita	3	BGO, ZnWO4	SiPM
TileHCal	3	organic scnt. tiles	SiPM
GlassScintTile	1	SciGlass	SiPM
Scint-Strip	1	Scint.Strips	SiPM
T-SDHCAL	1	GRPC	pad boards
MPGD-Calo	1	muRWELL,MMegas	pad boards(FATIC ASIC/MOSAIC)
Si-W ECAL	1	Silicon sensors	direct withdedicated ASICS (SKIROCN)
Si/GaAS-W ECAL	1	Silicon/GaAS	direct withdedicated ASICS (FLAME, FLAXE)
DECAL	1	CMOS/MAPS	Sensor=ASIC
AHCAL	1	Scint. Tiles	SiPM
MODE	4	-	-
Common RO ASIC	4	-	common R/O ASIC Si/SiPM/Lar

Different calorimeter types but similar challenges

ECFA WG3 - May 2023

nds:

n-detector embedded elx. Challenges: #channels, Low power digital noise, lata reduction

f-detector electronics: ore/crystal readout Challenges: .ow power, data reduction

gital calorimetry:

Challenges: extreme) #channels, ow power, data reduction

- Dynamic gain preamp or TOT ?
- 200 ns shaping, 10 MHz ADC, several samples on the waveform
- Timing capability ? Auto-trigger and zero suppression
- Target ~1 mW power/ch and possible power pulsing
- I²C slow control ? New readout protocol ?
- Include 2.5V LDO inside VFE ?
- Compatible with FCC LAr. SiPM/RPC tbd

	experiment	Sensor	capacitance	shaping	power	data	techno	Vdd	slow control
SKIROC2	CALICE	Si	30 pF	300 ns	5 mW/ch	5 MHz	SiGe 350n	3.3 V	SPI
HGCROC	CMS	Si	50 pF	20 ns	20 mW/ch	1.2 Gb/s	TSMC 130n	1.2 V	l²C
FCC	LAR	Lar	50-200 pF	200 ns	<1 mW	Gb/s	TSMC 130n	1.2 V	l²C
SKIROC3	CALICE	Si	50 pF	200 ns	<1 mW	Mb/S	TSMC 130n	1.2 V	?

CdLT CALICE meeting 20 apr 2022

- The main goal will be to avoid parallel developments
- Requires close communication with DRD 3 and DRD 7 ECFA WG3 – May 2023

Ch. de la Taille CALICE Meeting, Valencia

Timing ?

ECFA

- Timing is a wide field
- A look to 2030 make resolutions between 20ps and 100ps at system level realistic assumptions
- At which level: 1 MIP or Multi-MIP?

For which purpose ?

•Mitigation of pile-up (basically all high rate experiments) •Support of PFA – unchartered territory

- •Calorimeters with ToF functionality in first layers?
 - •Might be needed if no other PiD detectors are available (rate, technology or space requirements)

•In this case 20ps (at MIP level) would be maybe not enough

•Longitudinally unsegmented fibre calorimeters

• A topic on which calorimetry has to make up it's mind

•Remember also that time resolution comes at a price -> High(er) power consumption and (maybe) higher noise levels

Required Time Resolution [ps]

Materials for optical calorimeters

V. Sola AIDAinnova Meeting Valencia

Nanomaterial composites (NCs)

Semiconductor nanostructures can be used as sensitizers/emitters for ultrafast, robust scintillators:

- Perovskite (ABX₃) or chalcogenide (oxide, sulfide) nanocrystals
- Cast with polymer or glass matrix
- Decay times down to O(100 ps)
- Radiation hard to O(1 MGy)

Despite promise, applications in HEP have received little attention to date

No attempt yet to build a real calorimeter with NC scintillator and test it with high-energy beams

Shashlyk design naturally ideal as a test platform:

- Easy to construct a shashlyk calorimeter with very fine sampling
- Primary scintillator and WLS materials required: both can be optimized using NC technology

KOPIO/PANDA design Fine-sampling shashlyk

R&D on material has Overlap with DRD 5

- 19 of 23 input proposals have declared that the devices are going to be tested in beam test (no surprise)
- (Main) target projects of input proposals (partially double counted, not mutually exclusive)

 Higgs factories dominate • HF includes heavy flavor that target superb elm. energy resolutions • (Already now) orientation towards future hadron collider and muon

- Relatively high density of beam tests with new (large scale) prototypes after 2025
- The large scale beam tests will be preceded by smaller scale beam tests
 - Individual layers smaller systems before "mass production"

2030

Match Irradiation/Beamtest Facilities Detector Needs

	Energy	Irradiation
Higgs Factory CMS energy 90-1 TeV Radiation <= 10 ¹⁴ n _{eq/} cm ²	✓	
HL-LHC CMS energy 14 TeV (shared by partons) Radiation ~10 ¹⁶ n _{eq} /cm ²	(√)	\checkmark
Muon Collider CMS energy 3-10 TeV Radiation ~HL-LHC	Χ	\checkmark
Future Hadron Collider CMS energy 100 TeV (shared by partons) Radiation up to ~10 ¹⁸ n _{eq} /cm ²	Χ	Χ

Common setup at CERN June 2022

ECFA

- Calorimeters are typically large objects • A beam test is similar to a small experiment
- Difficult for facility managers to schedule calorimeter beam tests
 - No concurring running with other devices possible
- Takes lots of expertise to carry out a successful beam test campaign
 - Implies use of infrastructure
- A dedicated beam line maybe with dedicated slots during a year may help curing these issues • Would need sustained expertise on the beamline

Implementation of custom producers is rather simple easier integration with other eudaq producers (TLU, Telescopes) Already a long list of custom producers integrated:

- CALICE SiWECAL,
- CALICE AHCAL,
- CALICE SiWECAL
 + AHCAL,
- CMS HGCAL silicon prototype + CALICE AHCAL, ...

Better to involve G4 collaboration at the beginning of the testbeam. G4 collaboration available to help with the geant4-val inclusion

geant-val.cern.ch

Geant-val is the Geant4 validation and testing suite.

For the Community, it allows to deploy results on a common data-base and fetch the information via a web-interface.

For the developers, it allows to Create multiple jobs over beam energies, particle types, physics lists

ECFA Complex Calorimeters – A playground for modern algorithms

Tommaso Dorigo and MODE Collaboration

Machine Learning approach is gaining more and more importance in HEP and in calorimetry in particular highly complex data with large number of detailed information Simulation provides tagged data for supervised learning Tracking, clustering, particle ID ...

Use training data with known labels (often from Monte Carlo simulation)

ECFA WG3 - May 2023

important for now.

 $\hat{p}(\mathbf{x}) = f_{\theta}(\mathbf{x})$

 $p(\mathbf{x})$

True probablity density

ECFA

- Detector Optimisation is a wide field
- Requires interplay between all components of a detector concept
- During optimisation studies a working software system is of paramount importance
 - Should allow for comparing detecor concepts on equal footing
- Carrying detector requirements into Detector R&D require close communication between concepts and detector R&D Collaborations
- Detector R&D Collaborations allow for exploiting synergies between different proposals
 - DRD on Calo will give great importance to transversal aspects of R&D
 - Material
 - Electronics and DAQ
 - Beamtests and mutual support
 - Don't forget: Data analysis of recorded calo prototype data do have a scientific value on their own
- Funding should support this wide range of topics: It will pay off ECFA WG3 - May 2023

ECFA

ILD concept and highly granular calorimeters

- ILD is particle flow detector
 - Implies goal to measure every particle of hadronic final state
 - Key components for PFA are highly granular calorimeters
- Calorimeter options in ILD
 - Silicon-Tungsten Ecal
 - 26-30 layers
 - Cell size 5.5x5.5mm², layer depth 0.6-1.6 X₀
 - Scintillator-Tungsten Ecal
 - 30 layers
 - Strip size 5x45 mm², layer depth 0.7 X_o
 - Analogue Hcal
 - 48 layers
 - Scintillating tiles: $30x30mm^2$, layer depth $0.11\lambda_1$
 - Absorber stainless steel
 - Semi-Digital Hcal
 - 48 layers
 - GRPC: $10x10mm^2$, layer depth 0.12 λ_1
 - Absorber stainless steel

