

Criteria for unbiased estimation: Applications to noise-agnostic sensing and channel learning

<u>Hyukgun Kwon</u>,^{1, 2, *} Kento Tsubouchi,^{3, *} Chia-Tung Chu, ¹ and Liang Jiang ¹ ¹University of Chicago, ²Korea Institute of Science and Technology, ³University of Tokyo * Equally contributed authors

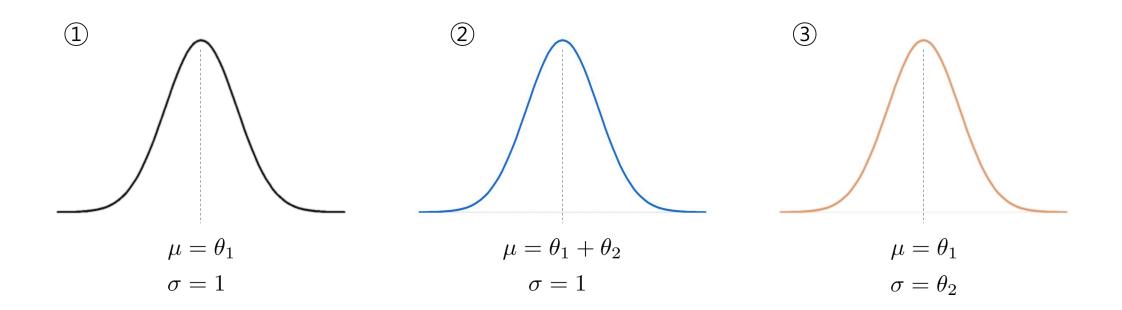
arXiv: 2503.17362

25.04.03 UTokyo

kwon37hg@uchicago.edu

Pop Quiz

Can you accurately find what are θ_1 and θ_2 ?



Is there any general criteria for achieving unbiased estimation?

Multi-parameter estimations

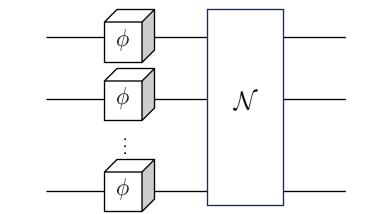
Noise

Quantum systems are influenced by multiple parameters

Phase estimation

Phase

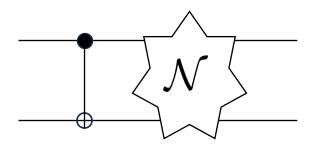
Phys. Rev. A **89**, 023845 (2014). Nat. Commun. **5**, 3532 (2014).



Channel learning

Nat. Commun. 14, 52 (2023).

Pauli Channel

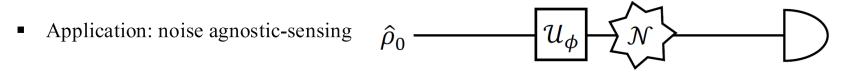


In this work

We establish necessary and sufficient conditions for unbiased estimation

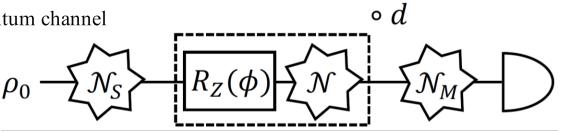
State estimation: parameters are encoded in a quantum state

- Lemma 1: based on quantum Fisher information matrix
- Theorem 1: based on the derivatives of the encoded state

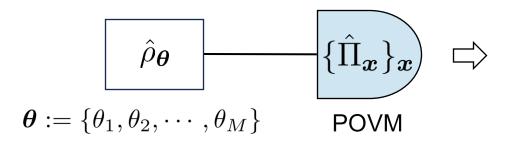


Channel estimation: estimating parameters characterizing quantum channel

- Corollary 1: based on the derivatives of the quantum channel
- Application: learnability of quantum channel



Multi-parameter estimation and Unbiased estimator



$$ilde{m heta} := \{ ilde{ heta}_1(m{x}), ilde{ heta}_2(m{x}), \cdots, ilde{ heta}_M(m{x})\}$$
 (estimated values of $m heta$)

Unbiased estimator

$$\left< ilde{ heta}_i(oldsymbol{x}) \right> := \int ilde{ heta}_i(oldsymbol{x}) \ p(oldsymbol{x}) doldsymbol{x} = heta_i$$

Can we always perform unbiased estimation for every parameters?

Quantum Cramér-Rao bound (QCRB)

When quantum Fisher information matrix is invertible, unbiased estimations are possible!

Quantum Cramér–Rao lower bound J. Phys. A: Math. Theor. 53, 453001 (2020).

$$\boldsymbol{w}_1^{\mathrm{T}} \mathbf{C} \boldsymbol{w}_1 = \left\langle \left(\tilde{\theta}_1 - \left\langle \tilde{\theta}_1 \right\rangle \right)^2 \right\rangle \geq \boldsymbol{w}_1^{\mathrm{T}} \mathbf{J}^{-1} \boldsymbol{w}_1 \qquad \boldsymbol{w}_1 = (1, 0, \cdots, 0)^{\mathrm{T}}$$

C is $M \times M$ covariance matrix with its elements $[\mathbf{C}]_{ij} = \langle \left(\tilde{\theta}_i - \langle \tilde{\theta}_i \rangle \right) \left(\tilde{\theta}_j - \langle \tilde{\theta}_j \rangle \right) \rangle$

J is $M \times M$ quantum Fisher information matrix with its elements $[\mathbf{J}]_{ij} = \text{Tr}\left[\hat{\rho}_{\theta}\{\hat{L}_i, \hat{L}_j\}\right] \left(\frac{\partial \hat{\rho}_{\theta}}{\partial \theta_i} = \frac{1}{2}\{\hat{L}_i, \hat{\rho}_{\theta}\}\right)$

- There always exist an **unbiased estimator of** θ_1 and **measurement** that saturate the **equality**
- This can be generalized to arbitrary parameter $\boldsymbol{\phi} = \boldsymbol{w}^T \boldsymbol{\theta}$ for any given $\boldsymbol{w} \in \mathbb{R}^M$
- 1. Unbiased estimation for any given parameter $\boldsymbol{\phi} = \boldsymbol{w}^T \boldsymbol{\theta}$ is possible
- 2. Provides ultimate achievable estimation error

(When QFIM is invertible!)

Simple examples for non-invertible QFIM

When QFIM is not invertible,

1. Unbiased estimation of $\phi = w^T \theta$ cannot be guaranteed

2. Achievable lower bound (QCRB) cannot be defined

Example 1.
$$e^{-i\theta_1 \hat{Z}} e^{-i\theta_2 \hat{X}} |+\rangle = e^{-i\theta_1 \hat{Z}} |+\rangle \quad \mathbf{J} = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}$$

parameters	θ_1	θ_2	$\theta_1 + \theta_2$	$\theta_1-\theta_2$
unbiasedness	0	Х	Х	Х

Example 2.
$$e^{-i(\theta_1+\theta_2)\hat{Z}} |+\rangle \quad \mathbf{J} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \quad \mathbf{J}_{SVD} = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}$$

parameters	θ_1	θ_2	$\theta_1 + \theta_2$	$\theta_1-\theta_2$
unbiasedness	Х	Х	0	Х

Parameters related to zero part of QFIM are not unbiasedly estimatable

Lemma 1. Unbiased estimation of $\phi = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{\theta}$ can be performed if and only if $\boldsymbol{w} \in \mathrm{supp}(\mathbf{J})$. If the condition is satisfied, the achievable lower bound of the estimation error is given by generalized QCRB:

$$\Delta^2 \phi = \boldsymbol{w}^{\mathrm{T}} \mathbf{C} \boldsymbol{w} \ge \boldsymbol{w}^{\mathrm{T}} \mathbf{J}^+ \boldsymbol{w}$$
(1)

- supp(**J**): subspace spanned by non-zero eigenvectors of **J**
- J^+ : Moore-Penrose pseudoinverse. The pseudo inverse on the support of J is equivalent to the inverse defined on the support of J.
- Necessary and sufficient condition for unbiased estimation
- Generalized QCRB (Eq. (1)) which provides the lower bound and can be defined even when QFIM is not invertible

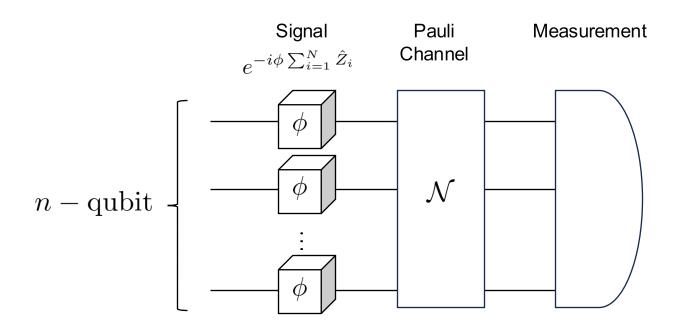
Theorem 1.

Theorem 1. Unbiasd estimation of θ_1 can be performed if and only if

$$\frac{\partial \hat{\rho}_{\boldsymbol{\theta}}}{\partial \theta_1} \neq \sum_{i=2}^M c_i \frac{\partial \hat{\rho}_{\boldsymbol{\theta}}}{\partial \theta_i}, \ \forall c_i \in \mathbb{C}.$$
 (1)

- If Eq. (1) is violated, there exists at least two different parameter set which results in the same encoded state $\hat{\rho}_{\theta} \rightarrow$ Cannot perform unbiased estimation
- Equivalent to Lemma 1, easier to detect

Application: Noise agnostic sensing



Unknown Pauli channel $\,\mathcal{N}\,$

• Pauli eigenvalues

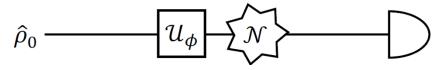
 $\mathcal{N}(\hat{P}_{a}) = \lambda_{a}\hat{P}_{a}$

• Assume that all the Pauli eigenvalues are unknown

Can perform unbiased estimation of ϕ ?

Application: Noise agnostic sensing

(a) Naive sensing protocol

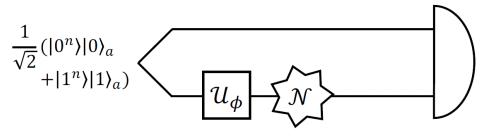


$$\hat{\rho}_0 = \sum_{\boldsymbol{a}} \hat{P}_{\boldsymbol{a}} \longrightarrow \sum_{\boldsymbol{a}} u_{\boldsymbol{a}}(\phi) \hat{P}_{\boldsymbol{a}} \longrightarrow \hat{\rho} = \sum_{\boldsymbol{a}} \lambda_{\boldsymbol{a}} u_{\boldsymbol{a}}(\phi) \hat{P}_{\boldsymbol{a}}$$

$$\square \qquad \qquad \searrow \partial_{\phi}\hat{\rho} = \sum_{a} \frac{\partial_{\phi} u_{a}(\phi)}{u_{a}(\phi)} \lambda_{a} \partial_{\lambda_{a}}\hat{\rho}$$

• Unbiased estimation: X

(b) Noise-agnostic sensing using entanglement



- Unbiased estimation: O
- The ultimate achievable lower bound is (according to generalized QCRB)

$$\delta^2 \phi \ge \frac{1}{n^2 \sum_{\boldsymbol{x} \in \{0,1\}^n} p_{\boldsymbol{x}} \lambda_{\boldsymbol{x}}^2}$$

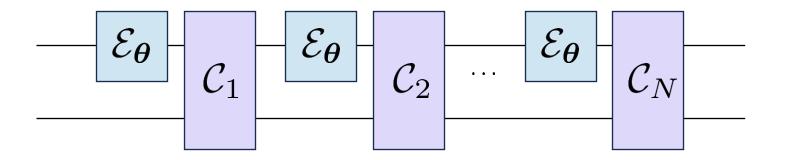
Noiseless ancilla enables unbiased estimation

Corollary 1.

Corollary 1. For a given quantum channel \mathcal{E}_{θ} , unbiasd estimation of θ_1 can be performed if and only if,

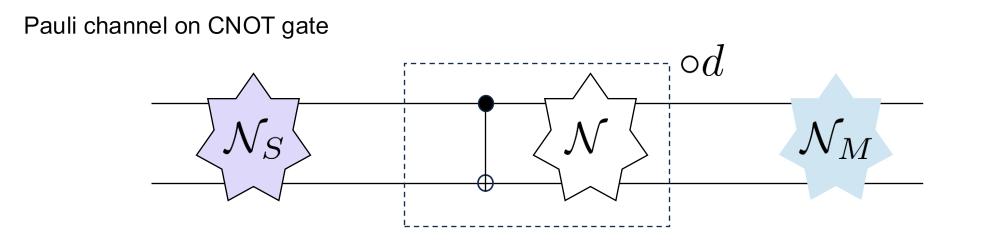
$$\frac{\partial \mathcal{E}_{\boldsymbol{\theta}}}{\partial \theta_1} \neq \sum_{i \neq 1} c_i \frac{\partial \mathcal{E}_{\boldsymbol{\theta}}}{\partial \theta_i}, \ \forall c_i \in \mathbb{C}.$$
 (1)

• If Eq. (1) is violated, even the sequential scheme cannot perform unbiased estimation



Learnability of Pauli channel

Nat. Commun. 14, 52 (2023).

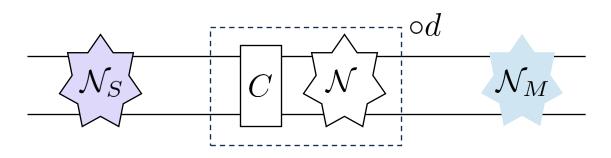


- Can we learn all the Pauli eigenvalues of \mathcal{N} ? \square Yes
- Can we learn all the Pauli eigenvalues of \mathcal{N} in the presence of SPAM error? \square No

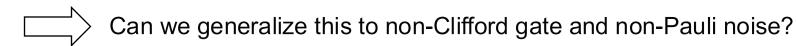
Because there is gauge degree of freedom $\{\mathcal{N}, \mathcal{N}_S, \mathcal{N}_M\} = \{\mathcal{N}', \mathcal{N}'_S, \mathcal{N}'_M\}$

Ref. Nat. Commun. 14, 52

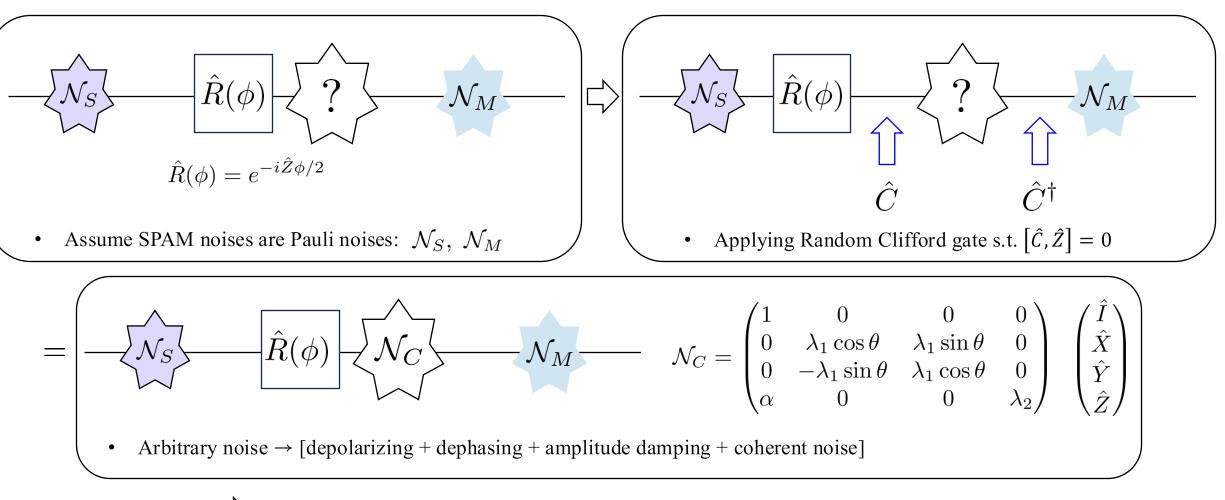
Classified learnable and un-learnable Pauli eigenvalues for Pauli channel acting on two-qubit Clifford gate



• Proof depends on the structure of the Clifford gates and Pauli channel



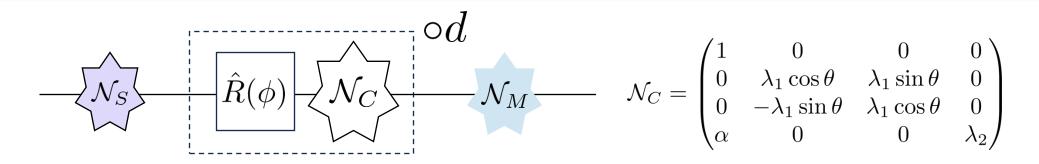
Phase rotation gate + Symmetric Clifford twirling



> Can we learn the relevant parameters $\lambda_1, \lambda_2, \theta, \alpha$?

arXiv:2405.07720 (2024).

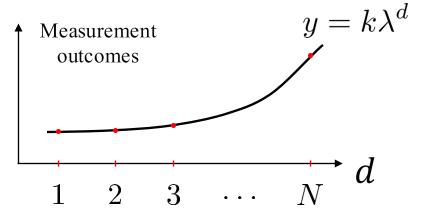
Noise learnability through Cycle benchmarking



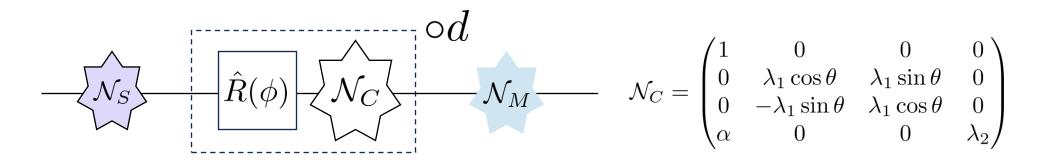
Cycle benchmarking Nat. Commun. 10, 5347 (2019).

- Cycle benchmarking identifies noise parameters by repeatedly applying a gate sequence and analyzing the resulting outputs to extrapolate the parameters
- Quantum channel

$$\mathcal{E}_{\text{cycle}}: \hat{\rho} \otimes \hat{\rho}_c \mapsto \sum_d \mathcal{N}_d(\hat{\rho}) \otimes |d\rangle \langle d| \, \hat{\rho}_c \, |d\rangle \langle d|$$
$$\mathcal{N}_d = \mathcal{N}_M \circ (\mathcal{N} \circ \mathcal{U})^{\circ d} \circ \mathcal{N}_S$$



Noise learnability through Cycle benchmarking



Learnability of the parameters of $\mathcal{N}_C(\lambda_1, \lambda_2, \theta, \alpha)$

• α is not learnable = unbiased estimation of α is impossible

Violation of Corollary 1: $\alpha \partial_{\alpha} \mathcal{E}_{cycle} = \lambda_{3M} \partial_{\lambda_{3M}} \mathcal{E}_{cycle} - \lambda_{3S} \partial_{\lambda_{3S}} \mathcal{E}_{cycle}$ ($\lambda_{3S}, \lambda_{3M}$: Noise parameters of SPAM noise)

• $\lambda_1, \lambda_2, \phi$ are learnable = we can perform unbiased estimation even though we do not know SPAM noise

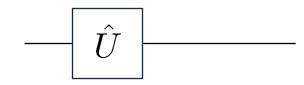
We derive necessary and sufficient conditions for the unbiased estimation for state and channel estimation Hamiltonian learning arXiv: 2502, 11900

Quantum metrology

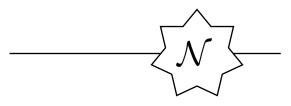
• Inspecting feasibility of unbiased estimation.

Learning theory

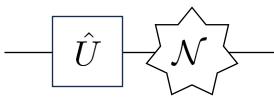
• Inspecting learnability of channel parameters



Pauli channel learning Phys. Rev. Lett. 132, 180805



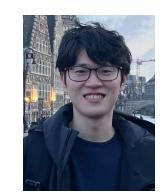
Unitary + Pauli channel learning



Collarborators

Hyukgun Kwon

kwon37hg@uchicago.edu



Kento Tsubouchi

tsubouchi@noneq.t.u-tokyo.ac.jp

Chia-Tung Chu

Liang Jiang

liangjiang@uchicago.edu